Publications

2016

  1. Hayashi, R., et al., “Subharmonic Response of Polymer Contrast Agents Based on the Empirical Mode Decomposition,” Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, in press.
  2. Ordeig, O., et al., An implantable compoun-dreleasing capsule triggered on demand by ultrasound. Scientific Reports, 2016. 6.
  3. Eddo, O., et al., Evidence Supporting Biphasic Action Of Rectus Femoris During Gait Using Ultrasound Imaging: 3130 Board #195 June 3, 2: 00 PM – 3: 30 PM. Med Sci Sports Exerc, 2016. 48(5 Suppl 1): p. 890.
  4. Chitnis, P.V., et al., Coherence-Weighted Synthetic Focusing Applied to Photoacoustic Imaging Using a High-Frequency Annular-Array Transducer. Ultrasonic Imaging, 2016. 38(1): p. 32-43.
  5. Akhlaghi, N., et al., Real-Time Classification of Hand Motions Using Ultrasound Imaging of Forearm Muscles. IEEE Trans Biomed Eng, 2016. 63(8): p. 1687-98.

 

2015

  1. Turo, D., et al., Novel Use of Ultrasound Elastography to Quantify Muscle Tissue Changes After Dry Needling of Myofascial Trigger Points in Patients With Chronic Myofascial Pain. J Ultrasound Med, 2015. 34(12): p. 2149-61.
  2. Sampathkumar, A., et al., Quantitative photoacoustic assessment of ex vivo lymph nodes of colorectal-cancer patients. Photons Plus Ultrasound: Imaging and Sensing 2015, 2015. 9323.
  3. Koppolu, S., et al., Correlation of Rupture Dynamics to the Nonlinear Backscatter Response From Polymer-Shelled Ultrasound Contrast Agents. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2015. 62(3): p. 494-501.
  4. Hossain, M.M., et al., Semiautomatic segmentation of atherosclerotic carotid artery wall volume using 3D ultrasound imaging. Med Phys, 2015. 42(4): p. 2029-43.
  5. AlMuhanna, K., et al., Carotid plaque morphometric assessment with three-dimensional ultrasound imaging. J Vasc Surg, 2015. 61(3): p. 690-7.
  6. Allen, J.S., et al., Subharmonic Threshold for Chirp Excitations of High Frequency Contrast Agents. 2015 IEEE International Ultrasonics Symposium (Ius), 2015.

 

2014

  1. Sikdar, S., Q. Wei, and N. Cortes, Dynamic ultrasound imaging applications to quantify musculoskeletal function. Exerc Sport Sci Rev, 2014. 42(3): p. 126-35.
  2. Sikdar, S., et al., Novel Method for Predicting Dexterous Individual Finger Movements by Imaging Muscle Activity Using a Wearable Ultrasonic System. IEEE Trans Neural Syst Rehabil Eng, 2014. 22(1): p. 69-76.
  3. Sampathkumar, A., et al., Optical characterization of ex-vivo axillary lymph nodes of breast-cancer patients using a custom-built spectrophotometer. Optical Biopsy Xii, 2014. 8940.
  4. Sampathkumar, A., P.V. Chitnis, and R.H. Silverman, All-optical photoacoustic microscopy (AOPAM) system for remote characterization of biological tissues. Photons Plus Ultrasound: Imaging and Sensing 2014, 2014. 8943.
  5. Chitnis, P.V., et al., Spectrum analysis of photoacoustic signals for tissue classification. Photons Plus Ultrasound: Imaging and Sensing 2014, 2014. 8943.
  6. Chitnis, P.V., H. Lloyd, and R.H. Silverman, An adaptive interferometric sensor for all-optical photoacoustic microscopy. 2014 IEEE International Ultrasonics Symposium (Ius), 2014: p. 353-356.

 

2013

  1. Turo, D., et al., Ultrasonic characterization of the upper trapezius muscle in patients with chronic neck pain. Ultrason Imaging, 2013. 35(2): p. 173-87.
  2. Filoux, E., et al., High-frequency annular array with coaxial illumination for dual-modality ultrasonic and photoacoustic imaging. Review of Scientific Instruments, 2013. 84(5).
  3. Eranki, A., et al., A novel application of musculoskeletal ultrasound imaging. J Vis Exp, 2013(79): p. e50595.
  4. Chitnis, P.V., et al., Coherence-weighted beamforming and automated vessel segmentation for improving photoacoustic imaging of embryonic vasculature using annular arrays. 2013 IEEE International Ultrasonics Symposium (Ius), 2013: p. 1185-1188.
  5. Chitnis, P.V., et al., Spectrum analysis of photoacoustic signals for characterizing tissue microstructure. 2013 IEEE International Ultrasonics Symposium (Ius), 2013: p. 1849-1852.
  6. Chitnis, P.V., et al., Influence of Shell Properties on High-Frequency Ultrasound Imaging and Drug Delivery Using Polymer-Shelled Microbubbles. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2013. 60(1): p. 53-64.

 

2012

  1. Turo, D., et al., Ultrasonic tissue characterization of the upper trapezius muscle in patients with myofascial pain syndrome. Conf Proc IEEE Eng Med Biol Soc, 2012. 2012: p. 4386-9.
  2. Koppolu, S., et al., Influence of shell-thickness-to-radius ratio on buckling and rupture of polymer-shelled ultrasound contrast agents. 2012 IEEE International Ultrasonics Symposium (Ius), 2012: p. 398-401.
  3. Eranki, A., et al., Real-time measurement of rectus femoris muscle kinematics during drop jump using ultrasound imaging: a preliminary study. Conf Proc IEEE Eng Med Biol Soc, 2012. 2012: p. 4851-4.
  4. Chitnis, P.V., et al., Influence of shell parameters on response of polymer-shelled microbubbles to high-frequency ultrasound. 2012 IEEE International Ultrasonics Symposium (Ius), 2012: p. 644-647.
  5. Chitnis, P.V., et al., Combined Optoacoustic and high-frequency ultrasound imaging of live mouse embryos. Photons Plus Ultrasound: Imaging and Sensing 2012, 2012. 8223.
  6. Ballyns, J.J., et al., Office-based elastographic technique for quantifying mechanical properties of skeletal muscle. J Ultrasound Med, 2012. 31(8): p. 1209-19.
  7. AlMuhanna, K., et al., Investigation of cerebral hemodynamics and collateralization in asymptomatic carotid stenoses. Conf Proc IEEE Eng Med Biol Soc, 2012. 2012: p. 5618-21.

 

2011

  1. Lebiedowska, M.K., et al., Knee joint angular velocities and accelerations during the patellar tendon jerk. J Neurosci Methods, 2011. 198(2): p. 255-9.
  2. Kong, F.T., et al., Photoacoustic-guided convergence of light through optically diffusive media. Optics Letters, 2011. 36(11): p. 2053-2055.
  3. Kong, F.T., et al., Focusing of light through scattering media. Photons Plus Ultrasound: Imaging and Sensing 2011, 2011. 7899.
  4. Chitnis, P.V., et al., Rupture threshold characterization of polymer-shelled ultrasound contrast agents subjected to static overpressure. Journal of Applied Physics, 2011. 109(8).

 

2010

  1. Chitnis, P.V., et al., Optoacoustic Imaging for Guiding and Monitoring HIFU Therapy. 10th International Symposium on Therapeutic Ultrasound (Istu 2010), 2011. 1359: p. 36-41.
  2. Sikdar, S., et al., Understanding the vascular environment of myofascial trigger points using ultrasonic imaging and computational modeling. Conf Proc IEEE Eng Med Biol Soc, 2010. 2010: p. 5302-5.
  3. Manzi, N.J., et al., Detecting cavitation in mercury exposed to a high-energy pulsed proton beam. Journal of the Acoustical Society of America, 2010. 127(4): p. 2231-2239.
  4. Eranki, A., et al., Measurement of tendon velocities using vector tissue Doppler imaging: a feasibility study. Conf Proc IEEE Eng Med Biol Soc, 2010. 2010: p. 5310-3.
  5. Chitnis, P.V., et al., A photoacoustic sensor for monitoring in situ temperature during HIFU exposures. 9th International Symposium on Therapeutic Ultrasound, 2010. 1215: p. 267-272.
  6. Chitnis, P.V., et al., Mitigation of Damage to Solid Surfaces From the Collapse of Cavitation Bubble Clouds. Journal of Fluids Engineering-Transactions of the Asme, 2010. 132(5).
  7. Chitnis, P.V., et al., Optoacoustic Imaging of HIFU-induced Thermal Lesions in Tissue. Photons Plus Ultrasound: Imaging and Sensing 2010, 2010. 7564.
  8. Chitnis, P.V., et al., Feasibility of optoacoustic visualization of high-intensity focused ultrasound-induced thermal lesions in live tissue. Journal of Biomedical Optics, 2010. 15(2).

 

2009

  1. Zhuang, B., et al., Real-time 3-D ultrasound scan conversion using a multicore processor. IEEE Trans Inf Technol Biomed, 2009. 13(4): p. 571-4.
  2. Sikdar, S., et al., Novel applications of ultrasound technology to visualize and characterize myofascial trigger points and surrounding soft tissue. Arch Phys Med Rehabil, 2009. 90(11): p. 1829-38.
  3. Sikdar, S., et al., Measurement of rectus femoris muscle velocities during patellar tendon jerk using vector tissue doppler imaging. Conf Proc IEEE Eng Med Biol Soc, 2009. 2009: p. 2963-6.
  4. Eranki, A. and S. Sikdar, Experimental characterization of a vector Doppler system based on a clinical ultrasound scanner. Conf Proc IEEE Eng Med Biol Soc, 2009. 2009: p. 2260-3.

 

2008

  1. Yoo, Y.M., et al., Adaptive clutter rejection for 3D color Doppler imaging: preliminary clinical study. Ultrasound Med Biol, 2008. 34(8): p. 1221-31.
  2. Sikdar, S., et al., Assessment of myofascial trigger points (MTrPs): a new application of ultrasound imaging and vibration sonoelastography. Conf Proc IEEE Eng Med Biol Soc, 2008. 2008: p. 5585-8.
  3. Shamdasani, V., et al., Research interface on a programmable ultrasound scanner. Ultrasonics, 2008. 48(3): p. 159-68.
  4. Cleveland, R.O., P.V. Chitnis, and S.R. McClure, Shock Wave Therapy: What Really Matters Reply. Ultrasound in Medicine and Biology, 2008. 34(11): p. 1869-1870.
  5. Chitnis, P.V., P.E. Barbone, and R.O. Cleveland, Customization of the acoustic field produced by a piezoelectric array through interelement delays. Journal of the Acoustical Society of America, 2008. 123(6): p. 4174-4185.

 

2007

  1. Sikdar, S., et al., Ultrasonic Doppler vibrometry: novel method for detection of left ventricular wall vibrations caused by poststenotic coronary flow. J Am Soc Echocardiogr, 2007. 20(12): p. 1386-92.
  2. Cleveland, R.O., P.V. Chitnis, and S.R. Mcclure, Acoustic field of a ballistic shock wave therapy device. Ultrasound in Medicine and Biology, 2007. 33(8): p. 1327-1335.

 

2006

  1. Sikdar, S., et al., Ultrasonic interrogation of tissue vibrations in arterial and organ injuries: preliminary in vivo results. Ultrasound Med Biol, 2006. 32(8): p. 1203-14.
  2. Sikdar, S., et al., Ultrasonic Doppler vibrometry: measurement of left ventricular wall vibrations associated with coronary artery disease. Conf Proc IEEE Eng Med Biol Soc, 2006. 1: p. 863-6.
  3. Chitnis, P.V. and R.O. Cleveland, Acoustic and cavitation fields of shock wave therapy devices. Therapeutic Ultrasound, 2006. 829: p. 440-444.
  4. Chitnis, P.V. and R.O. Cleveland, Quantitative measurements of acoustic emissions from cavitation at the surface of a stone in response to a lithotripter shock wave (L). Journal of the Acoustical Society of America, 2006. 119(4): p. 1929-1932.

 

2005

  1. Sikdar, S., et al., Ultrasonic technique for imaging tissue vibrations: preliminary results. Ultrasound Med Biol, 2005. 31(2): p. 221-32.
  2. Sikdar, S., et al., Ultrasonic imaging of myocardial vibrations associated with coronary artery disease. Conf Proc IEEE Eng Med Biol Soc, 2005. 4: p. 4310-3.
  3. Sikdar, S., et al., Ultrasonic imaging of myocardial vibrations associated with coronary artery disease. Conf Proc IEEE Eng Med Biol Soc, 2005. 2: p. 1087-90.
  4. Cleveland, R.O., et al., An in vitro comparison of open-cage and encapsulated electrodes in shock wave lithotripsy(SWL). Journal of Urology, 2005. 173(4): p. 427-428.

 

2004

  1. Sikdar, S., et al., Ultrasonic techniques for assessing wall vibrations in stenosed arteries. Conf Proc IEEE Eng Med Biol Soc, 2004. 2: p. 1325-8.
  2. Shamdasani, V., et al., Ultrasound color-flow imaging on a programmable system. IEEE Trans Inf Technol Biomed, 2004. 8(2): p. 191-9.

 

2003

  1. Sikdar, S., et al., A single mediaprocessor-based programmable ultrasound system. IEEE Trans Inf Technol Biomed, 2003. 7(1): p. 64-70.